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A critical dilute O�n� model on the kagome lattice is investigated analytically and numerically. We employ
a number of exact equivalences which, in a few steps, link the critical O�n� spin model on the kagome lattice
to the exactly solvable critical q-state Potts model on the honeycomb lattice with q= �n+1�2. The intermediate
steps involve the random-cluster model on the honeycomb lattice and a fully packed loop model with loop
weight n�=�q and a dilute loop model with loop weight n, both on the kagome lattice. This mapping enables
the determination of a branch of critical points of the dilute O�n� model, as well as some of its critical
properties. These properties differ from those of the generic O�n� critical points. For n=0, our model repro-
duces the known universal properties of the � point describing the collapse of a polymer. For n�0 it displays
a line of multicritical points, with the same universal behavior as a branch of critical points that was found
earlier in a dilute O�n� model on the square lattice. These findings are supported by a finite-size-scaling
analysis in combination with transfer-matrix calculations.
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I. INTRODUCTION

The first exact results �1� for the O�n� critical properties
were obtained for a model on the honeycomb lattice and
revealed not only the critical point, but also some universal
parameters of the critical state, as well as the low-
temperature phase, as a function of n. The derivation of these
results depends on a special choice of the O�n�-symmetric
interaction between the n-component spins of the O�n�
model, which enables a mapping on a loop gas �2�. These
results were supposed to apply to a whole universality class
of O�n�-symmetric models in two dimensions.

Since then, also O�n� models on the square and triangular
lattices were investigated �3,4�. Indeed, branches were found
with the same universal properties as the honeycomb model,
but in addition to these, several other branches of critical
behavior were reported. Among these, we focus on “branch
0” as reported in Refs. �3,4�. The points on this branch ap-
pear to describe a higher critical point. For n=0, it can be
identified with the so-called � point �5� describing the col-
lapse of a polymer in two dimensions, which has been inter-
preted as a tricritical O�n=0� model. It has indeed been
found that the introduction of a sufficiently strong and suit-
ably chosen attractive potential between the loop segments
changes the ordinary O�n=0� transition into a first-order one
�6�, such that this change precisely coincides with the n=0
point of branch 0. Thus, the � point plays the role of a tric-
ritical O�n=0� transition. Furthermore, it has been verified
that tricriticality in the O�n� model can be introduced by
adding a sufficient concentration of vacancies into the sys-
tem �7�. More precisely, the introduction of vacancies leads
to a branch of higher critical points, of which the points n
=0 and n=1 belong to universality classes �of the � point and
the tricritical Blume-Capel model, respectively� that have
been described earlier as tricritical points.

However, the critical points of branch 0 on the square
lattice appear to display universal properties that are different

from those of the branch of higher critical points of the O�n�
model with vacancies �7�, except at the intersection point of
the two branches at n=0. It thus appears that the continuation
of the � point at n=0 to n�0 can be done in different ways,
leading to different universality classes. In order to gain fur-
ther insight into this situation, the present work considers an
O�n� loop model on the kagome lattice with the purpose to
find a �-like point, to continue this point to n�0 and to
explore the resulting universal properties.

The feasibility of this work is based on a series of exact
equivalences described in Sec. II. As a first step, the exactly
solvable critical q-state Potts model on the honeycomb lat-
tice is mapped onto the random-cluster �RC� model on the
same lattice. Then, this RC model is further mapped onto a
fully packed loop �FPL� model with loop weight n�=�q on
the kagome lattice. Next, the FPL model on the kagome lat-
tice is transformed into a dilute loop �DL� model with loop
weight n=�q−1 on the same lattice. Finally, we show that
the DL model is equivalent with an O�n�-symmetric spin
model on the kagome lattice. Since the critical point of the
RC model on the honeycomb lattice is known as function of
q, the critical points of both loop models, as well as that of
the spin model on the kagome lattice, are also determined.
The mappings described in Sec. II also relate some exactly
known critical properties of the q-state Potts model to those
of the FPL and DL models. These results are obtained in Sec.
III. Numerical verifications of these findings by using a
finite-size-scaling analysis in combination with transfer-
matrix calculations are presented in Sec. IV. The paper
concludes with a short discussion in Sec. V.

II. MAPPINGS

The partition function of the spin representation of q-state
Potts model on the honeycomb lattice
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ZPotts = �
�S�

exp	K�

i,j�

�si,sj� �1�

depends on the temperature T by the coupling K=J /kBT,
where J is the nearest-neighbor spin-spin interaction. The
spins si can assume values 1 ,2 , . . . ,q, and their index i labels
the sites of the honeycomb lattice. The first summation is
over all possible spin configurations �S�, and the second one
is over the nearest-neighbor spin pairs. This Potts model can
be subjected to a series of mappings which lead, via the
random-cluster model and a fully packed loop model, to a
dilute O�n� loop model which can also be interpreted as an
O�n� spin model.

A. Honeycomb Potts model to fully packed
kagome loop model

The introduction of bond variables and a summation on
the spin variables map the Potts model onto the RC model
�8�, with partition function

ZRC�u,q� = �
B

uNbqNc, �2�

where Nb is the number of bonds, Nc the number of clusters,
and u
eK−1 the weight of a bond. The sum is on all con-
figurations B of bond variables: each bond variable is either
1 �present� or 0 �absent�. In Eq. �2�, q can be considered a
continuous real number, playing the role of the weight of a
cluster. Here, a cluster is either a single site or a group of
sites connected together by bonds on the lattice. A typical
configuration of the RC model on the honeycomb lattice is
shown in Fig. 1.

The next step is a mapping of the RC model on the hon-
eycomb lattice onto a FPL model on the kagome lattice,
which proceeds similarly as in the case of the square lattice
�9�. The sites of FPL model sit in the middle of the edges of
the honeycomb lattice and thus form a kagome lattice �10�.
Fully packed here means that all edges of the kagome lattice
are covered by loop segments. The one-to-one correspon-

dence between these two configurations is established by re-
quiring that the loops do not intersect the occupied edges
�bonds� of the honeycomb RC model and always intersect
the empty edges, as illustrated in Fig. 1.

To specify the Boltzmann weights of the FPL model, we
assign a weight n to each loop, a weight a1 to each vertex
where the loop segments do not intersect an edge which is
occupied by a bond of the RC model, and a weight a2 to each
vertex where the loop segments intersect an edge which is
empty in the RC model, as illustrated in Fig. 2. The partition
function of the FPL model on the kagome lattice is thus
defined as

ZFPL
kag �a1,a2,n� = �

F
a1

m1a2
m2nml, �3�

where m1 is the number of type-1 vertices, m2 is the number
of type-2 vertices, and ml the number of loops. The sum is on
all configurations F of loops covering all the edges of the
kagome lattice.

The one-to-one correspondence between RC configura-
tions and FPL configurations makes it possible to express the
configuration parameters m1, m2, and ml of the FPL in those
of the RC model: namely, Nb and Nc. Each vertex of type 1
corresponds with a bond of the RC model on the honeycomb
lattice, and thus

m1 = Nb. �4�

The total number of the two kinds of vertices is equal to the
number of edges on the honeycomb lattice: i.e.,

m1 + m2 =
3N

2
, �5�

where N is the total number of sites of the honeycomb lat-
tice. Here we ignore surface effects of finite lattices. Further-
more, a loop on the kagome lattice is either one surrounding
a random cluster on the honeycomb lattice or one following
the inside of a loop formed by the bonds of a random cluster.
Thus

ml = Nc + Nl, �6�

where Nl is the loop number of the RC model. Together with
the Euler relation

FIG. 1. Mapping of the RC model onto a FPL model. The sites
of the honeycomb lattice are shown as black circles. The dashed
and the thin solid lines display the empty and the occupied edges
�bonds� of the RC model on the honeycomb lattice, respectively.
The RC configuration is here represented by an FPL configuration
on the surrounding lattice—i.e., the kagome lattice. Its loops �bold
solid lines� follow the boundaries of the random clusters, both ex-
ternally and internally. The Boltzmann weight of this finite-size
configuration of the RC configuration is u12q19 according to Eq. �2�,
and that of the corresponding FPL configuration is a1

12a2
26n20

according to Eq. �3�.

aa 21

FIG. 2. Vertex weights of the FPL model. The bold solid lines
represent loop segments. The weight of vertex where the loops do
not intersect a bond �thin solid line� is a1. The weight of a vertex
where two loops intersect an unoccupied edge �dashed line� is a2.
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Nc = N − Nb + Nl, �7�

Eqs. �4�–�6� yield the numbers of vertices and loops on the
kagome lattice as

m1 = Nb,

m2 = 3N/2 − Nb,

ml = 2Nc + Nb − N . �8�

Substitution in the partition function �3� leads to

ZFPL
kag = 	a2

3/2

n
�N

�
F
	a1n

a2
�Nb

�n2�Nc. �9�

The weight of a given loop configuration is thus equal to the
corresponding RC weight uNbqNc if

n = �q ,

a1 = uq−1/6,

a2 = q1/3, �10�

which completes the mapping of the RC onto the FPL model.

B. Fully packed loop model to dilute loop model

Next we map the FPL model on the kagome lattice onto a
DL model on the same lattice, using a method due to Nien-
huis �see, e.g., Ref. �3��. The partition function of the FPL
model on the kagome lattice is slightly rewritten as

ZFPL
kag = �a1 + a2�3N/2�

F
w1

m1w2
m2��n − 1� + 1�ml, �11�

with w1=a1 / �a1+a2� and w2=a2 / �a1+a2�. Equation �11� in-
vites an interpretation in terms of colored loops—say, red
with loops of weight n−1 and green loops of weight 1. Each
of the 2ml terms in the expansion of ��n−1�+1�ml thus speci-
fies a way to color the loops:

��n − 1� + 1�ml = �
�colorings�

�n − 1�lr1lg,

where lr and lg denote the number of red loops, and green
loops, respectively, lr+ lg=ml. Let C denote a graph F in
which the colors of all loops are specified. The partition sum
can thus be expressed in terms of a summation over all col-
ored loop configurations C. The vertices of the kagome lat-
tice are visited by two colored loops and can thus be divided
into six types, shown in Fig. 3 with their associated weights
x1=y1=z1=w1 and x2=y2=z2=w2. Thus, Eq. �11� assumes
the form

ZFPL
kag = �a1 + a2�3N/2�

C
x1

Nx1x2
Nx2y1

Ny1y2
Ny2z1

Nz1z2
Nz2�n − 1�lr1lg.

�12�

The sum �C on all colored loop configurations may now be
replaced by two nested sums, the first of which is a sum �R
on all dilute loop configurations of red loops, and the second

sum �G�R is on all configurations of green loops G that are
consistent with R—i.e., the green loop configurations that
cover all the kagome edges not covered by a red loop. Thus

ZFPL
kag = �a1 + a2�3N/2�

R
x1

Nx1x2
Nx2z1

Nz1z2
Nz2�n − 1�lr�

G�R
y1

Ny1y2
Ny21lg.

�13�

For each vertex visited by green loops only, there are pre-
cisely two possible local loop configurations. Since the loop
weight of the green loops is 1, the summation over such pairs
of configurations is trivial:

�
G�R

y1
Ny1y2

Ny21lg = �
G�R

y1
Ny1y2

Ny2 = �y1 + y2�Ng = 1, �14�

where Ng is the number of green-only vertices. The FPL
partition sum thus reduces to that of a dilute loop model,
involving only red loops of weight n−1:

ZFPL
kag �a1,a2,n� = �a1 + a2�3N/2ZDL

kag�x1,x2,z1,z2,n − 1� ,

�15�

where the partition function of the dilute loop model is de-
fined as

ZDL
kag�x1,x2,z1,z2,n� 
 �

L
x1

Nx1x2
Nx2z1

Nz1z2
Nz2nNl, �16�

in which we forget the color variable and denote the number
of loops in a dilute configuration L as Nl. The dilute vertices
are shown in Fig. 4, together with their weights. The expo-
nents of the vertex weights in Eq. �16� represent the numbers
of the corresponding vertices. Because of the similarity with
the derivation of branch 0 on the square lattice, we refer to
the model �16� as branch 0 of the kagome O�n� loop model.

The transformation between the FPL and the DL model is
illustrated in Fig. 5.

xx y z zy 11 2 1 2 2

FIG. 3. �Color online� Weights of colored vertices. The vertical
solid lines represent occupied edges �bonds� on the honeycomb lat-
tice, while dashed lines stand for empty edges. The bold solid lines
represent the red loop segments and the bold dashed lines the green
ones.

1x 2x 1z 2z1

FIG. 4. The five vertex weights for the dilute loop model. The
vertex with weight 1 results from a summation involving the
weights of vertices 3 and 4 in Fig. 3.
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C. Dilute loop model to O(n) spin model

The Boltzmann weights in Eq. �16� contain, besides the
loop weights, only local weights associated with the vertices
of the kagome lattice. Just as in the case of the O�n� model
on the square lattice described in Ref. �3�, there are precisely
four incoming edges at each vertex. This implies that there is
an equivalent O�n� spin model:

ZDL
kag�x1,x2,z1,z2,n� = Zspin�x1,x2,z1,z2� , �17�

of which the local weights have the same relation with the
vertex weights as for the square lattice model of Ref. �3�.
Thus, the partition sum of the spin model is expressed by

Zspin�x1,x2,z1,z2� 
 � ��
i

ds�i��
v

�1 + x1�s�v1 · s�v2 + s�v3 · s�v4�

+ x2�s�v1 · s�v4 + s�v2 · s�v3� + z1�s�v1 · s�v2�

��s�v3 · s�v4� + z2�s�v1 · s�v4��s�v2 · s�v3�� . �18�

The product is on all vertices v of the kagome lattice. The
spins s�vi sit on the midpoints of the edges of the kagome
lattice. Their subscript vi specifies the vertex v as well as the
position i �with 1� i�4� with respect to the vertex. The
label 1 runs clockwise around each vertex, such that the
spins s�v1 and s�v2 sit on the same side of the honeycomb edge
passing through vertex v. The spins have n Cartesian com-
ponents and are normalized to length �n. There are two dif-
ferent notations for each spin �because each spin is adjacent
to two vertices�, but a given subscript vi refers to only one
spin. Here the number n is restricted to positive integers, of
which only the case n=1 is expected to be critical.

D. Condition for criticality

Since the critical point of the RC model on the honey-
comb lattice is known �11� as a function of q, namely,

�uhc
c �3 − 3q�uhc

c � − q2 = 0, �19�

the corresponding critical point of the n=�q FPL model on
the kagome lattice is also known. According to Eq. �10�,

a1
c = uhc

c q−1/6

a2
c = q1/3, �20�

from which the corresponding critical point of the DL model
with loop weight n=�q−1 on the kagome lattice, as well as
that of the O�n� spin model, follows as

x1
c = z1

c =
uhc

c

uhc
c + �q

,

x2
c = z2

c =
�q

uhc
c + �q

. �21�

III. DERIVATION OF SOME CRITICAL PROPERTIES

The transformations described in Sec. II leave �apart from
a shift by a constant� the free energy unchanged and lead to
relations between the thermodynamic observables of the
various models. Thus, the conformal anomaly and some of
the critical exponents of the FPL and DL models can be
obtained from the existing results for the random-cluster
model. Thus, like in the analogous case of the O�n� model on
the square lattice �3�, the FPL model on the kagome lattice
should be in the universality class of the low-temperature
O�n� phase. However, the representation of magnetic corre-
lations in our present cylindrical geometry leads to a compli-
cation. The kagome lattice structure, together with the FPL
constraint, imposes the number of loop segments running
along the cylinder to be even. Since the O�n� spin-spin cor-
relation function is represented by a single loop segment in
the loop representation, which cannot be embedded in an
FPL model on the kagome lattice, it is not clear how to
represent magnetic correlations in this model. Thus we ab-
stain from a further discussion of the scaling dimensions of
the FPL model.

A. Conformal anomaly

For the FPL model with loop weight n on the kagome
lattice, the conformal anomaly c is equal to that of the n
=�q Potts model �12,13�:

c = 1 −
6

m�m + 1�
, 2 cos

�

m + 1
= n, m � 1. �22�

In the Coulomb gas language �14�, it can be expressed as a
function of the Coulomb gas coupling constant g, with g
=m / �m+1�:

c = 1 −
6�1 − g�2

g
, 2 cos��g� = − n, 0 � g � 1.

�23�

The conformal anomaly c of the branch-0 critical O�n�
DL model on the kagome lattice with loop weight n is given
by the same formula, but with n replaced by n+1:

c = 1 −
6

m�m + 1�
, 2 cos

�

m + 1
= n + 1, m � 1.

�24�

+ =

(a) (b) (c)

FIG. 5. �Color online� Partial summation on the green loops.
The solid lines represent red loops and the dashed lines green loops.
For a fixed configuration of red loops, each vertex visited only by
green loops has two possible weights: y1 or y2 �see Fig. 3�. For the
simple case shown here, there are two possible configurations �a�
and �b�, of which the relative weights are x1

6x2
2y1z1z2�n−1�212 and

x1
6x2

2y2z1z2�n−1�213, respectively. Addition of these weights yields
the weight x1

6x2
2z1z2�n−1�2 of the DL configuration shown in �c�.
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The conformal anomaly is, via the number m, related to a
set of scaling dimensions Xi as determined by the Kac for-
mula �15�

Xi =
�pi�m + 1� − qim�2 − 1

2m�m + 1�
, �25�

where pi and qi are integers for unitary models.

B. Temperature exponent

For the branch-0 critical DL model with loop weight n on
the kagome lattice, the temperature exponent is expected to
be the same as that for branch 0 on the square lattice �3�,
namely Xt=Xi with pi=m, qi=m in Eq. �25�.

C. Magnetic exponent

The magnetic exponent of the branch-0 DL model with
n=0 on the kagome lattice is not equal to the magnetic ex-
ponent of the low-temperature O�n+1� loop model. The
same situation was found earlier for the branch-0 O�0� model
on the square lattice �3�. According to the reason given in
�3�, the magnetic exponent is equal to the temperature one—
i.e., the pi=m, qi=m entry of Eq. �25�. The geometry of the
underlying FPL model, where the number of dangling bonds
is restricted to be even, plays here an essential role. Note that
the magnetic exponent of the tricritical dilute O�n� model
�7�, even at the � point, is different from that of branch 0.

These results for Xt and Xh are expressed in Coulomb gas
language as

Xt = Xh = 1 − 1/2g . �26�

IV. NUMERICAL VERIFICATION

A. Construction of the transfer matrix

The transfer matrix is constructed for an �L�M�-loop
model wrapped on a cylinder, with its axis perpendicular to
one of the lattice edge directions of the kagome lattice. The
finite size L is defined such that the circumference of the
cylinder is spanned by L /2 elementary hexagons �corner to
corner�. The cylinder is divided into M slices, of which L
sites form a cyclical row, while each of the L /2 remaining
sites forms an equilateral triangle with two of the sites of the
cyclical row. The length of the cylinder is thus M�3.

The partition function of this finite-size DL model is
given by Eq. �3�, but with LM instead of L, in order to
specify the length M of the cylinder:

Z�M� = �
LM

x1
Nx1x2

Nx2z1
Nz1z2

Nz2nNl. �27�

There are open boundaries at both ends of the cylinder, so
that there are L dangling edges connected to the vertices on
row 1, as well as on row M. The way in which the end points
of the dangling edges are pairwise connected by the loop
configuration LM is defined as the “connectivity”; see Ref.
�3� for details. Here we ignore the dangling edges of row 1
�except for a topological property that will be considered
later� and focus on the L dangling edges of row M. Since it

is determined by the loop configuration, the connectivity 	 at
row M is written as a function of LM: 	=
�LM�. The parti-
tion sum is divided into a number of restricted sums Z	

�M�,
each of which collects all terms in Z�M� having connectivity
	 on row M: i.e.,

Z�M� = �
	

Z	
�M�, Z	

�M� = �
LM

�	,
�LM�x1
Nx1x2

Nx2z1
Nz1z2

Nz2nNl.

�28�

An increase of the system length M to M +1 leads to a new
configuration LM+1 which can be decomposed in LM and the
appended configuration lM+1 on row M +1. The graph lM+1
fits the dangling edges of the loop graph LM on the M-row
lattice. The addition of the new row increases the number of
the four kinds of vertices and of the number of loops by nx1

,
nx2

, nz1
, nz2

, and nl, respectively. The restricted partition sum
of the system with M +1 rows is

Z�
�M+1� = �

LM+1

��,
�LM+1�x1
Nx1

+nx1x2
Nx2

+nx2z1
Nz1

+nz1z2
Nz2

+nz2nNl+nl

= �
LM

x1
Nx1x2

Nx2z1
Nz1z2

Nz2nNl �
lM+1�LM

��,
�LM+1�x1
nx1x2

nx2z1
nz1z2

nz2nnl.

�29�

The last sum is on all subgraphs lM+1 that fit LM. The con-
nectivity 
�LM+1� depends only on the connectivity 	 on
row M and on lM+1, so that we may write 
�LM+1�
=��	 , lM+1�. Thus Eq. �29� assumes the form

Z�
�M+1� = �

	
�
LM

�	,
�LM�x1
Nx1x2

Nx2z1
Nz1z2

Nz2nNl �
lM+1�	

��,��	,lM+1�

�x1
nx1x2

nx2z1
nz1z2

nz2nnl. �30�

The third sum depends only on � and 	, and thus defines the
elements of the transfer matrix T as

T�	 
 �
lM+1�	

��,��	,lM+1�x1
nx1x2

nx2z1
nz1z2

nz2nnl. �31�

Substitution of T�	 and Eq. �28� into Eq. �30� then yields the
recursion of the restricted partition sum as

Z�
�M+1� = �

	

T�	Z	
�M�. �32�

In order to save memory and computer time, the transfer
matrix of a system with finite size L is decomposed in 3L

2
sparse matrices:

T = TL/2+L � TL/2+L−1 � ¯ � TL/2+1 � TL/2 � TL/2−1

� ¯ � T2 � T1, �33�

where Ti denotes an operation which adds a new vertex i on
a new row, as illustrated in Fig. 6. Most of these sparse
matrices are square, but TL/2+1 is not, because it increases the
number of dangling bonds by 2. The action of the other
rectangular matrix, TL/2+L, reduces the number of dangling
bonds again to L.

During the actual calculations, we only store the positions
and values of the nonzero elements of a sparse matrix, in a
few one-dimensional arrays. Moreover, this need not be done
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for all the sparse matrices, because there are only four inde-
pendent matrices. The other ones are related to these by the
action of the translation operator �3,16�.

While the construction of the transfer matrix is formulated
in terms of connectivities on the topmost rows M and M
+1, the connectivity on row 1 is not entirely negligible. In
particular, the number of dangling loop segments on that row
can be even or odd. As a consequence, the number of dan-
gling loop segments on the topmost row is then also even or
odd, respectively. This leads to a decomposition of the trans-
fer matrix in an even and an odd sector. The odd sector
corresponds with a single loop segment running in the length
direction of the cylinder.

B. Numerical analysis

For a model on an infinitely long cylinder with finite size
L, the free energy per unit of area is determined by

f�L� =
1

�3L
ln 
L

�0�, �34�

where 
L
�0� is the largest eigenvalue of T in the nd=0 sector.

The large-L asymptotic finite-size dependence of the free
energy per site at the critical point is �12,13�

f�L� � f��� +
�c

6L2 , �35�

where c is the conformal anomaly of the model. However, in
general, one expects corrections decaying with smaller �i.e.,
more negative� powers of L. Once the finite-size data for the
free energy at the critical points are calculated, we can esti-
mate c as c�1��L� from the free energy densities for two con-
secutive system sizes by solving

c�1��L� = 6�f�L� − f�L + 1��/���1/L2 − 1/�L + 1�2�� .

�36�

This leads to a sequence of estimates of c�1��L�, which should
converge to the conformal anomaly c of the model. These
estimates can be fitted by solving for c�2��L�, a�2��L�, and y in
the three following equations with L�=L, L−1, and L−2:

c�1��L�� = c�2��L� + a�2��L�L�y , �37�

which leads to a sequence c�2��L� that is shorter than the
original sequence c�1��L�, but usually shows faster apparent
convergence. Then another iteration step can be attempted.
We thus estimate the conformal anomaly c �3,7,16�. The un-
certainty margin in c is estimated from the L dependence of
the differences between subsequent estimates produced by
the last iteration step.

The magnetic correlation length �h�L� is related to the
magnetic gap in the eigenvalue spectrum of T as

�h
−1�L� =

1
�3

ln�
L
�0�/
L

�1�� , �38�

where 
L
�1� is the largest eigenvalue of T in the nd=1 sector.

The temperature correlation length �t�L� is related to the
temperature gap in the eigenvalue spectrum of T as

�t
−1�L� =

1
�3

ln�
L
�0�/
L

�2�� , �39�

where 
L
�2� is the second largest eigenvalue of T in the nd

=0 sector.
The asymptotic behavior of the magnetic correlation

length �h�L� near a critical point can be expressed in terms of
the magnetic scaled gap

Xh�t,u,L� 

L

2��h�t,u,L�
, �40�

where t parametrizes the distance to the critical point and u
represents an irrelevant field. At the critical point, finite-size
scaling �17� and conformal invariance �18� predict that, for
large L, Xh�t ,u ,L� converges to Xh as a power law:

Xh�t,u,L� � Xh + a1Lyuu + ¯ , �41�

where Xh is the magnetic scaling dimension, yu is the irrel-
evant exponent of the field u, and a1 is an unknown ampli-
tude. Further power-law corrections, due to other irrelevant
fields, may also be present.

(a) (b)

(d)

(e)

L−3

2 3L−1

L+1
L+2

L−1

1

L−2 L

(c)

(f)

1L−2 L−1 L 2 3

L−4

L 1 2 3 4 5 L−2

L−1 L

1 2 3

L−2 1 L−3

L−1

L−2

L+1L
L+2

1 2

L

FIG. 6. Constructing the transfer matrix. Appending a new row
to the configuration is achieved in two parts. The first part consists
of L /2 steps and is denoted TL/2¯T1 �which are executed from
right to left�. Each step adds a new site to the lattice. Two of these
steps are illustrated in �a�–�c�. The number of dangling bonds does
not change during these steps. The second part consists of L steps
and is denoted T3L/2¯TL/2+1. The first step of these, TL/2+1, adds a
new vertex to the subrow and increases the number of dangling
bonds by 2 as shown in �d�. The following steps TL/2+2¯T3L/2−1

append vertices sequentially and do not change the number of dan-
gling bonds. After adding the last vertex by T3L/2 to the subrow, the
construction of a new row has been completed and the size of the
system shrinks from L+2 to L.
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After calculating the finite-size data for the scaled gap,
one can extrapolate these data in order to estimate the mag-
netic scaling dimension Xh, analogous to the procedure used
to determine the conformal anomaly.

A similar analysis can be performed on the temperature
correlation length �t�L�, on the basis of the the scaled
temperature gap

Xt�t,u,L� 

L

2��t�t,u,L�
, �42�

which should �17,18�, at the critical point, converge to the
temperature scaling dimension Xt with increasing L:

Xt�t,u,L� � Xt + b1Lyuu + ¯ , �43�

where b1 is an unknown amplitude. Thus, we can, analogous
to the case of Xh, extrapolate the temperature scaling dimen-
sion Xt, using power-law fits.

C. Numerical results

We calculated the finite-size data for the free energies of
the FPL model at the critical points given by Eq. �20�, for
several values of n and for system sizes L=2,4 , . . . ,28.
These data include the case n=0; this is possible because, for
q→0, one has uhc

c →�3q, so that the ratio between a1
c and a2

c

in Eq. �20� remains well defined in this limit.
The additional loop configurations allowed by the dilute

model lead to a larger transfer matrix for a given system size,
so that our results at the critical points given by Eqs. �21� are
restricted to sizes L=2,4 , . . . ,18. The latter results also in-
clude the temperature and magnetic gaps.

The finite-size data for the FPL and DL models were fitted
using the methods explained above. The results displayed a
good apparent convergence.

In the kagome lattice FPL model, it is not possible to
introduce one single-open-loop segment running in the
length direction of the cylinder. The presence of a single
chain would force unoccupied edges into the system, in vio-
lation of the FPL condition. Therefore, we have no results for
Xh. Furthermore, in the case of the low-temperature O�n�
phase, the eigenvalue associated with Xt decreases rapidly
when n becomes smaller than 2 and becomes dominated by
other eigenvalues. Therefore, also results for Xt are absent
for the FPL model, and our results are here restricted to the
conformal anomaly c. The resulting estimates for the FPL
model are listed in Table I.

The results for the eigenvalue 
L
�0� of the the FPL model

satisfy, within the numerical precision in the order of 10−12,
the relation between the FPL and DL models derived in Sec.
II B. The larger dimensionality of the transfer matrix of the
DL model in comparison with the FPL model generates new
eigenvalues and thus leads to new scaling dimensions that
are absent in the FPL model. Final estimates for the confor-
mal anomaly c and for the scaling dimensions Xt and Xh are
listed in Table II for the DL model. They agree well with the
theoretical predictions, which are included in the table. Here
we recall that, in analogy with the case of the branch-0 O�n�
loop model on the square lattice �3�, the magnetic scaling

TABLE I. Conformal anomaly c of the FPL model as deter-
mined by the transfer-matrix calculations described in the text. The
sizes of the system L are from 2 to 28. Estimated error margins in
the last decimal place are given in parentheses. The numerical re-
sults are indicated by ‘num’. For comparison, we include theoretical
values indicated by ‘th’, as given by Eq. �23�.

n cth cnum

0 −2 −2.000001 �1�
0.25 −1.3526699 −1.352670 �5�
0.5 −0.8197365 −0.819737 �5�
0.75 −0.3749081 −0.374908 �5�

1 0 0

1.25 0.31782377 0.31782 �2�
�2 1 /2 0.5000000 �2�

1.50 0.58757194 0.587565 �5�
�3 4 /5 0.80000 �1�

1.75 0.81497930 0.81498 �2�
2 1 1.0001 �1�

TABLE II. Conformal anomaly c, magnetic scaling dimension Xh, and temperature scaling dimension Xt of the DL model as determined
by the transfer-matrix calculations described in the text. Estimated error margins in the last decimal place are given in parentheses. The
numerical results are indicated by ‘num.’ For comparison, we include the theoretical values indicated by ‘th,’ as given by Eqs. �24� and �26�.

n cth cnum Xh
th, Xt

th Xh
num, Xt

num

−1 −2 −2.0000 �2� 0 0.0000000 �1�
−0.75 −1.3526699 −1.3524 �3� 0.073890718 0.0738908 �2�
−0.5 −0.8197365 −0.8194 �5� 0.138570601 0.138571 �1�
−0.25 −0.3749081 −0.3747 �3� 0.196602972 0.196605 �5�

0 0 0 1 /4 0.25000 �1�
0.25 0.31782377 0.31778 �5� 0.300602502 0.30061 �5�
�2−1 1 /2 0.500001 �1� 1 /3 0.33334 �1�
0.50 0.58757194 0.5876 �1� 0.350604267 0.35061 �1�
�3−1 4 /5 0.8002 �3� 2 /5 0.3997 �5�
0.75 0.81497930 0.8151 �3� 0.404150985 0.4037 �5�

1 1 1.002 �3� 1 /2 0.48 �3�
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dimension should be exactly equal to the thermal one. This is
in agreement with our numerical results. We found that the
eigenvalues 
L

�1� and 
L
�2� were the same within the numeri-

cal error margin. Thus, we list only one column with results
for the exponents in Table II.

V. CONCLUSION

We found a branch of critical points of the dilute loop
model on the kagome lattice as a function of the loop weight
n, which is related to the q= �n+1�2 state Potts model on the
honeycomb lattice. The critical properties of these critical
points are conjectured and verified by numerical transfer ma-
trix calculations and a finite-size-scaling analysis. As ex-
pected, the model falls into the same universality class as
branch 0 of the O�n� loop model �3� on the square lattice.
The analysis did, however, yield a difference. This is due to
the geometry of the lattice. For the square lattice, it was
found �3� that there exists a magnetic scaling dimension Xint,1
as revealed by the free energy difference between even and
odd systems. Such an alternation is absent in the free energy
of the present model on the kagome lattice. While the num-

ber of dangling edges may be odd or even for the square
lattice, it can only be even in the present case of the kagome
lattice.

The numerical accuracy of the results for the conformal
anomaly and the exponents is much better than what can be
typically achieved for an arbitrary critical point, whose loca-
tion in the parameter space has to be determined in advance
by so-called phenomenological renormalization �19�. This
seems not only due to the limited precision of such a critical
point. We suppose that the main reason is that irrelevant
scaling fields tend to be suppressed in exactly solvable
parameter subspaces.

ACKNOWLEDGMENTS

We are much indebted to Bernard Nienhuis, for making
his insight in the physics of O�n� loop models available to
us. This research is supported by the National Science Foun-
dation of China under Grant No. 10675021, by the Beijing
Normal University through a grant as well as support from
its HSCC �High Performance Scientific Computing Center�,
and by the Lorentz Fund �The Netherlands�.

�1� B. Nienhuis, Phys. Rev. Lett. 49, 1062 �1982�; J. Stat. Phys.
34, 731 �1984�.

�2� E. Domany, D. Mukamel, B. Nienhuis, and A. Schwimmer,
Nucl. Phys. B 190�FS3�, 279 �1981�.

�3� H. W. J. Blöte and B. Nienhuis, J. Phys. A 22, 1415 �1989�.
�4� Y. M. M. Knops, H. W. J. Blöte, and B. Nienhuis, J. Phys. A

26, 495 �1993�.
�5� B. Duplantier and H. Saleur, Phys. Rev. Lett. 59, 539 �1987�.
�6� H. W. J. Blöte, M. T. Batchelor, and B. Nienhuis, Physica A

251, 95 �1988�.
�7� W.-A. Guo, B. Nienhuis, and H. W. J. Blöte, Int. J. Mod. Phys.

C 10, 291 �1999�; Phys. Rev. Lett. 96, 045704 �2006�.
�8� P. W. Kasteleyn and C. M. Fortuin, J. Phys. Soc. Jpn. 46,

Suppl., 11 �1969�; C. M. Fortuin and P. W. Kasteleyn, Physica
�Amsterdam� 57, 536 �1972�.

�9� R. J. Baxter, S. B. Kelland, and F. Y. Wu, J. Phys. A 9, 397
�1976�.

�10� I. Syôzi, Prog. Theor. Phys. 6, 306 �1951�.
�11� F. Y. Wu, Rev. Mod. Phys. 54, 235 �1982�.

�12� H. W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys. Rev.
Lett. 56, 742 �1986�.

�13� I. Affleck, Phys. Rev. Lett. 56, 746 �1986�.
�14� B. Nienhuis, in Phase Transitions and Critical Phenomena,

edited by C. Domb and J. L. Lebowitz �Academic Press, Lon-
don, 1987�, Vol. 11.

�15� D. Friedan, Z. Qiu, and S. Shenker, Phys. Rev. Lett. 52, 1575
�1984�.

�16� H. W. J. Blöte and M. P. Nightingale, Physica A 112, 405
�1982�.

�17� For reviews, see, e.g., M. P. Nightingale, in Finite-Size Scaling
and Numerical Simulation of Statistical Systems, edited by V.
Privman �World Scientific, Singapore, 1990�; M. N. Barber, in
Phase Transitions and Critical Phenomena, edited by C.
Domb and J. L. Lebowitz �Academic, New York, 1983�, Vol.
8.

�18� J. L. Cardy, J. Phys. A 17, L385 �1984�.
�19� M. P. Nightingale, Proc. K. Ned. Akad. Wet., Ser. B Palaeon-

tol., Geol., Phys., Chem. 82, 235 �1979�.

LI, GUO, AND BLÖTE PHYSICAL REVIEW E 78, 021128 �2008�

021128-8


